Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 136
Filter
1.
Dis Model Mech ; 17(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38602028

ABSTRACT

Duchenne muscular dystrophy (DMD) is a devastating monogenic skeletal muscle-wasting disorder. Although many pharmacological and genetic interventions have been reported in preclinical studies, few have progressed to clinical trials with meaningful benefit. Identifying therapeutic potential can be limited by availability of suitable preclinical mouse models. More rigorous testing across models with varied background strains and mutations can identify treatments for clinical success. Here, we report the generation of a DMD mouse model with a CRISPR-induced deletion within exon 62 of the dystrophin gene (Dmd) and the first generated in BALB/c mice. Analysis of mice at 3, 6 and 12 months of age confirmed loss of expression of the dystrophin protein isoform Dp427 and resultant dystrophic pathology in limb muscles and the diaphragm, with evidence of centrally nucleated fibers, increased inflammatory markers and fibrosis, progressive decline in muscle function, and compromised trabecular bone development. The BALB/c.mdx62 mouse is a novel model of DMD with associated variations in the immune response and muscle phenotype, compared with those of existing models. It represents an important addition to the preclinical model toolbox for developing therapeutic strategies.


Subject(s)
Disease Models, Animal , Dystrophin , Mice, Inbred BALB C , Muscle, Skeletal , Muscular Dystrophy, Duchenne , Animals , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/genetics , Dystrophin/metabolism , Dystrophin/genetics , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Mice, Inbred mdx , Mice , Exons/genetics , Male , Fibrosis , Phenotype
2.
Leukemia ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491305

ABSTRACT

Thrombopoietin (Tpo), which binds to its specific receptor, the Mpl protein, is the major cytokine regulator of megakaryopoiesis and circulating platelet number. Tpo binding to Mpl triggers activation of Janus kinase 2 (Jak2) and phosphorylation of the receptor, as well as activation of several intracellular signalling cascades that mediate cellular responses. Three tyrosine (Y) residues in the C-terminal region of the Mpl intracellular domain have been implicated as sites of phosphorylation required for regulation of major Tpo-stimulated signalling pathways: Mpl-Y565, Mpl-Y599 and Mpl-Y604. Here, we have introduced mutations in the mouse germline and report a consistent physiological requirement for Mpl-Y599, mutation of which resulted in thrombocytopenia, deficient megakaryopoiesis, low hematopoietic stem cell (HSC) number and function, and attenuated responses to myelosuppression. We further show that in models of myeloproliferative neoplasms (MPN), where Mpl is required for pathogenesis, thrombocytosis was dependent on intact Mpl-Y599. In contrast, Mpl-Y565 was required for negative regulation of Tpo responses; mutation of this residue resulted in excess megakaryopoiesis at steady-state and in response to myelosuppression, and exacerbated thrombocytosis associated with MPN.

5.
Cancer Discov ; 14(2): 362-379, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-37877779

ABSTRACT

Mutations in the tumor suppressor TP53 cause cancer and impart poor chemotherapeutic responses, reportedly through loss-of-function, dominant-negative effects and gain-of-function (GOF) activities. The relative contributions of these attributes is unknown. We found that removal of 12 different TP53 mutants with reported GOFs by CRISPR/Cas9 did not impact proliferation and response to chemotherapeutics of 15 human cancer cell lines and colon cancer-derived organoids in culture. Moreover, removal of mutant TP53/TRP53 did not impair growth or metastasis of human cancers in immune-deficient mice or growth of murine cancers in immune-competent mice. DepMap mining revealed that removal of 158 different TP53 mutants had no impact on the growth of 391 human cancer cell lines. In contrast, CRISPR-mediated restoration of wild-type TP53 extinguished the growth of human cancer cells in vitro. These findings demonstrate that LOF but not GOF effects of mutant TP53/TRP53 are critical to sustain expansion of many tumor types. SIGNIFICANCE: This study provides evidence that removal of mutant TP53, thereby deleting its reported GOF activities, does not impact the survival, proliferation, metastasis, or chemotherapy responses of cancer cells. Thus, approaches that abrogate expression of mutant TP53 or target its reported GOF activities are unlikely to exert therapeutic impact in cancer. See related commentary by Lane, p. 211 . This article is featured in Selected Articles from This Issue, p. 201.


Subject(s)
Colonic Neoplasms , Tumor Suppressor Protein p53 , Humans , Mice , Animals , Cell Line, Tumor , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Mutation , Colonic Neoplasms/genetics , Cell Proliferation
6.
Cell Death Differ ; 31(2): 150-158, 2024 02.
Article in English | MEDLINE | ID: mdl-38097622

ABSTRACT

Whole-genome screens using CRISPR technologies are powerful tools to identify novel tumour suppressors as well as factors that impact responses of malignant cells to anti-cancer agents. Applying this methodology to lymphoma cells, we conducted a genome-wide screen to identify novel inhibitors of tumour expansion that are induced by the tumour suppressor TRP53. We discovered that the absence of Arrestin domain containing 3 (ARRDC3) increases the survival and long-term competitiveness of MYC-driven lymphoma cells when treated with anti-cancer agents that activate TRP53. Deleting Arrdc3 in mice caused perinatal lethality due to various developmental abnormalities, including cardiac defects. Notably, the absence of ARRDC3 markedly accelerated MYC-driven lymphoma development. Thus, ARRDC3 is a new mediator of TRP53-mediated suppression of tumour expansion, and this discovery may open new avenues to harness this process for cancer therapy.


Subject(s)
Lymphoma , Neoplasms , Animals , Mice , Arrestins/genetics , Arrestins/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Neoplasms/genetics
7.
Cell Death Differ ; 31(2): 159-169, 2024 02.
Article in English | MEDLINE | ID: mdl-38110554

ABSTRACT

Transcriptional activation of target genes is essential for TP53-mediated tumour suppression, though the roles of the diverse TP53-activated target genes in tumour suppression remains poorly understood. Knockdown of ZMAT3, an RNA-binding zinc-finger protein involved in regulating alternative splicing, in haematopoietic cells by shRNA caused leukaemia only with the concomitant absence of the PUMA and p21, the critical effectors of TRP53-mediated apoptosis and cell cycle arrest respectively. We were interested to further investigate the role of ZMAT3 in tumour suppression beyond the haematopoietic system. Therefore, we generated Zmat3 knockout and compound gene knockout mice, lacking Zmat3 and p21, Zmat3 and Puma or all three genes. Puma-/-p21-/-Zmat3-/- triple knockout mice developed tumours at a significantly higher frequency compared to wild-type, Puma-/-Zmat3-/- or p21-/-Zmat3-/-deficient mice. Interestingly, we observed that the triple knockout and Puma-/-Zmat3-/- double deficient animals succumbed to lymphoma, while p21-/-Zmat3-/- animals developed mainly solid cancers. This analysis suggests that in addition to ZMAT3 loss, additional TRP53-regulated processes must be disabled simultaneously for TRP53-mediated tumour suppression to fail. Our findings reveal that the absence of different TRP53 regulated tumour suppressive processes changes the tumour spectrum, indicating that different TRP53 tumour suppressive pathways are more critical in different tissues.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Animals , Mice , Apoptosis/genetics , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Incidence , Mice, Knockout , Neoplasms/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
8.
PNAS Nexus ; 3(1): pgad438, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38156288

ABSTRACT

Skin inflammation is a complex process implicated in various dermatological disorders. The chronic proliferative dermatitis (cpd) phenotype driven by the cpd mutation (cpdm) in the Sharpin gene is characterized by dermal inflammation and epidermal abnormalities. Tumour necrosis factor (TNF) and caspase-8-driven cell death causes the pathogenesis of Sharpincpdm mice; however, the role of mind bomb 2 (MIB2), a pro-survival E3 ubiquitin ligase involved in TNF signaling, in skin inflammation remains unknown. Here, we demonstrate that MIB2 antagonizes inflammatory dermatitis in the context of the cpd mutation. Surprisingly, the role of MIB2 in limiting skin inflammation is independent of its known pro-survival function and E3 ligase activity. Instead, MIB2 enhances the production of wound-healing molecules, granulocyte colony-stimulating factor, and Eotaxin, within the skin. This discovery advances our comprehension of inflammatory cytokines and chemokines associated with cpdm pathogenesis and highlights the significance of MIB2 in inflammatory skin disease that is independent of its ability to regulate TNF-induced cell death.

9.
Stem Cell Reports ; 18(12): 2515-2527, 2023 12 12.
Article in English | MEDLINE | ID: mdl-37977144

ABSTRACT

The capability to generate induced pluripotent stem cell (iPSC) lines, in tandem with CRISPR-Cas9 DNA editing, offers great promise to understand the underlying genetic mechanisms of human disease. The low efficiency of available methods for homogeneous expansion of singularized CRISPR-transfected iPSCs necessitates the coculture of transfected cells in mixed populations and/or on feeder layers. Consequently, edited cells must be purified using labor-intensive screening and selection, culminating in inefficient editing. Here, we provide a xeno-free method for single-cell cloning of CRISPRed iPSCs achieving a clonal survival of up to 70% within 7-10 days. This is accomplished through improved viability of the transfected cells, paralleled with provision of an enriched environment for the robust establishment and proliferation of singularized iPSC clones. Enhanced cell survival was accompanied by a high transfection efficiency exceeding 97%, and editing efficiencies of 50%-65% for NHEJ and 10% for HDR, indicative of the method's utility in stem cell disease modeling.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , CRISPR-Cas Systems/genetics , DNA/metabolism , Cell Line , Cloning, Molecular , Gene Editing/methods
10.
Brain ; 146(12): 5086-5097, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37977818

ABSTRACT

Stuttering is a common speech disorder that interrupts speech fluency and tends to cluster in families. Typically, stuttering is characterized by speech sounds, words or syllables which may be repeated or prolonged and speech that may be further interrupted by hesitations or 'blocks'. Rare variants in a small number of genes encoding lysosomal pathway proteins have been linked to stuttering. We studied a large four-generation family in which persistent stuttering was inherited in an autosomal dominant manner with disruption of the cortico-basal-ganglia-thalamo-cortical network found on imaging. Exome sequencing of three affected family members revealed the PPID c.808C>T (p.Pro270Ser) variant that segregated with stuttering in the family. We generated a Ppid p.Pro270Ser knock-in mouse model and performed ex vivo imaging to assess for brain changes. Diffusion-weighted MRI in the mouse revealed significant microstructural changes in the left corticospinal tract, as previously implicated in stuttering. Quantitative susceptibility mapping also detected changes in cortico-striatal-thalamo-cortical loop tissue composition, consistent with findings in affected family members. This is the first report to implicate a chaperone protein in the pathogenesis of stuttering. The humanized Ppid murine model recapitulates network findings observed in affected family members.


Subject(s)
Stuttering , Humans , Animals , Mice , Stuttering/genetics , Stuttering/pathology , Peptidyl-Prolyl Isomerase F , Speech , Brain/diagnostic imaging , Brain/pathology , Brain Mapping
11.
EMBO Rep ; 24(11): e56865, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37846472

ABSTRACT

Programmed cell death pathways play an important role in innate immune responses to infection. Activation of intrinsic apoptosis promotes infected cell clearance; however, comparatively little is known about how this mode of cell death is regulated during infections and whether it can induce inflammation. Here, we identify that the pro-survival BCL-2 family member, A1, controls activation of the essential intrinsic apoptotic effectors BAX/BAK in macrophages and monocytes following bacterial lipopolysaccharide (LPS) sensing. We show that, due to its tight transcriptional and post-translational regulation, A1 acts as a molecular rheostat to regulate BAX/BAK-dependent apoptosis and the subsequent NLRP3 inflammasome-dependent and inflammasome-independent maturation of the inflammatory cytokine IL-1ß. Furthermore, induction of A1 expression in inflammatory monocytes limits cell death modalities and IL-1ß activation triggered by Neisseria gonorrhoeae-derived outer membrane vesicles (NOMVs). Consequently, A1-deficient mice exhibit heightened IL-1ß production in response to NOMV injection. These findings reveal that bacteria can induce A1 expression to delay myeloid cell death and inflammatory responses, which has implications for the development of host-directed antimicrobial therapeutics.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Mice , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , bcl-2-Associated X Protein/metabolism , Myeloid Cells/metabolism , Cell Death , Interleukin-1beta/metabolism
12.
Nat Commun ; 14(1): 6605, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37884534

ABSTRACT

Arthritogenic alphaviruses are positive-strand RNA viruses that cause debilitating musculoskeletal diseases affecting millions worldwide. A recent discovery identified the four-and-a-half-LIM domain protein 1 splice variant A (FHL1A) as a crucial host factor interacting with the hypervariable domain (HVD) of chikungunya virus (CHIKV) nonstructural protein 3 (nsP3). Here, we show that acute and chronic chikungunya disease in humans correlates with elevated levels of FHL1. We generated FHL1-/- mice, which when infected with CHIKV or o'nyong-nyong virus (ONNV) displayed reduced arthritis and myositis, fewer immune infiltrates, and reduced proinflammatory cytokine/chemokine outputs, compared to infected wild-type (WT) mice. Interestingly, disease signs were comparable in FHL1-/- and WT mice infected with arthritogenic alphaviruses Ross River virus (RRV) or Mayaro virus (MAYV). This aligns with pull-down assay data, which showed the ability of CHIKV and ONNV nsP3 to interact with FHL1, while RRV and MAYV nsP3s did not. We engineered a CHIKV mutant unable to bind FHL1 (CHIKV-ΔFHL1), which was avirulent in vivo. Following inoculation with CHIKV-ΔFHL1, mice were protected from disease upon challenge with CHIKV and ONNV, and viraemia was significantly reduced in RRV- and MAYV-challenged mice. Targeting FHL1-binding as an approach to vaccine design could lead to breakthroughs in mitigating alphaviral disease.


Subject(s)
Arthritis , Chikungunya Fever , Chikungunya virus , Vaccines , Animals , Humans , Mice , Arthritis/genetics , Chikungunya Fever/prevention & control , Intracellular Signaling Peptides and Proteins , LIM Domain Proteins/genetics , Muscle Proteins/genetics , O'nyong-nyong Virus
13.
Brief Bioinform ; 24(4)2023 07 20.
Article in English | MEDLINE | ID: mdl-37287132

ABSTRACT

In only a few years, as a breakthrough technology, clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) gene-editing systems have ushered in the era of genome engineering with a plethora of applications. One of the most promising CRISPR tools, so-called base editors, opened an exciting avenue for exploring new therapeutic approaches through controlled mutagenesis. However, the efficiency of a base editor guide varies depending on several biological determinants, such as chromatin accessibility, DNA repair proteins, transcriptional activity, factors related to local sequence context and so on. Thus, the success of genetic perturbation directed by CRISPR/Cas base-editing systems relies on an optimal single guide RNA (sgRNA) design, taking those determinants into account. Although there is 11 commonly used software to design guides specifically for base editors, only three of them investigated and implemented those biological determinants into their models. This review presents the key features, capabilities and limitations of all currently available software with a particular focus on predictive model-based algorithms. Here, we summarize existing software for sgRNA design and provide a base for improving the efficiency of existing available software suites for precise target base editing.


Subject(s)
Gene Editing , RNA, Guide, CRISPR-Cas Systems , Gene Editing/methods , CRISPR-Cas Systems , Software , DNA/genetics , DNA/metabolism
14.
Curr Opin Immunol ; 83: 102343, 2023 08.
Article in English | MEDLINE | ID: mdl-37245415

ABSTRACT

Immunity to systemic Salmonella infection depends on multiple effector mechanisms. Lymphocyte-derived interferon gamma (IFN-γ) enhances cell-intrinsic bactericidal capabilities to antagonize the hijacking of phagocytes as replicative niches for Salmonella. Programmed cell death (PCD) provides another means through which phagocytes fight against intracellular Salmonella. We describe remarkable levels of flexibility with which the host coordinates and adapts these responses. This involves interchangeable cellular sources of IFN-γ regulated by innate and adaptive cues, and the rewiring of PCD pathways in previously unknown ways. We discuss that such plasticity is likely the consequence of host-pathogen coevolution and raise the possibility of further functional overlap between these seemingly distinct processes.


Subject(s)
Salmonella Infections , Humans , Phagocytes , Interferon-gamma , Apoptosis , Salmonella/metabolism , Immunity, Innate
15.
mBio ; 14(2): e0058823, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37036079

ABSTRACT

Arthritogenic alphaviruses such as Ross River virus (RRV) and Chikungunya virus (CHIKV) are responsible for large-scale epidemics that cause debilitating acute and chronic musculoskeletal diseases. MXRA8 was recently discovered as an entry receptor for multiple alphaviruses including CHIKV, RRV, Mayaro virus (MAYV), and O'nyong-nyong virus (ONNV). However, the role of MXRA8 in the development of alphavirus-induced musculoskeletal inflammation has not yet been fully studied. Here, we attempt to fully characterize the contribution of MXRA8 to RRV disease in an established mouse model. MXRA8 knockout (MXRA8-/-) mice generated on a C57BL/6J background, showed abrogated disease signs and reduced viral replication, which correlated with lower viral load, diminished proinflammatory cytokines, and limited cell infiltrates in inflamed tissues. Immunomodulation genes were upregulated to higher levels in RRV-infected wild-type (WT) mice than in MXRA8-/- mice. Intriguingly, Cdkn1a and Ifi44 genes in blood and CD127/IL7RA, CD45, BatF3, IFNGR, Ly6G/Ly6C, CD40, CD127, F4/80, and MHC-II genes in quadriceps were found to be upregulated in RRV-infected MXRA8-/- mice compared to WT mice. Our results showed an essential role of MXRA8 in the immune response of mice infected with RRV and, more importantly, demonstrated novel changes in immunomodulation genes, which shed light on the immunopathogenesis of alphavirus-induced disease. IMPORTANCE Previous studies have shown the importance of the cell surface protein MXRA8 as an entry receptor for several different prominent alphaviruses such as CHIKV, RRV, MAYV, and ONNV. In particular, the role of MXRA8 in the tissue tropism, viral pathogenesis, and immune response of a CHIKV mouse model have already been briefly characterized. However, the role of MXRA8 warrants further characterization in RRV disease background, since there are noticeable differences in the disease profile between CHIKV and RRV. For example, patients infected with CHIKV are usually affected by sudden onset of severe arthritis and fever, whereas RRV-infected patients generally only have minor joint pain and mild fever. Here, we characterized the role of MXRA8 in RRV disease and assessed several key mechanisms of MXRA8 that may contribute to the disease progression.


Subject(s)
Alphavirus Infections , Arthritis , Chikungunya virus , Animals , Mice , Ross River virus/genetics , Mice, Inbred C57BL , Chikungunya virus/genetics , Immunoglobulins , Membrane Proteins/metabolism
16.
Cell Death Differ ; 30(6): 1447-1456, 2023 06.
Article in English | MEDLINE | ID: mdl-36894688

ABSTRACT

Many lymphoid malignancies arise from deregulated c-MYC expression in cooperation with additional genetic lesions. While many of these cooperative genetic lesions have been discovered and their functions characterised, DNA sequence data of primary patient samples suggest that many more do exist. However, the nature of their contributions to c-MYC driven lymphomagenesis have not yet been investigated. We identified TFAP4 as a potent suppressor of c-MYC driven lymphoma development in a previous genome-wide CRISPR knockout screen in primary cells in vivo [1]. CRISPR deletion of TFAP4 in Eµ-MYC transgenic haematopoietic stem and progenitor cells (HSPCs) and transplantation of these manipulated HSPCs into lethally irradiated animals significantly accelerated c-MYC-driven lymphoma development. Interestingly, TFAP4 deficient Eµ-MYC lymphomas all arose at the pre-B cell stage of B cell development. This observation prompted us to characterise the transcriptional profile of pre-B cells from pre-leukaemic mice transplanted with Eµ-MYC/Cas9 HSPCs that had been transduced with sgRNAs targeting TFAP4. This analysis revealed that TFAP4 deletion reduced expression of several master regulators of B cell differentiation, such as Spi1, SpiB and Pax5, which are direct target genes of both TFAP4 and MYC. We therefore conclude that loss of TFAP4 leads to a block in differentiation during early B cell development, thereby accelerating c-MYC-driven lymphoma development.


Subject(s)
Lymphoma , Proto-Oncogene Proteins c-myc , Mice , Animals , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Genes, myc , Lymphoma/pathology , Precursor Cells, B-Lymphoid/metabolism , Mice, Transgenic
17.
Front Immunol ; 14: 1089243, 2023.
Article in English | MEDLINE | ID: mdl-36860866

ABSTRACT

Background: Humoral immunity depends on the differentiation of B cells into antibody secreting cells (ASCs). Excess or inappropriate ASC differentiation can lead to antibody-mediated autoimmune diseases, while impaired differentiation results in immunodeficiency. Methods: We have used CRISPR/Cas9 technology in primary B cells to screen for regulators of terminal differentiation and antibody production. Results: We identified several new positive (Sec61a1, Hspa5) and negative (Arhgef18, Pold1, Pax5, Ets1) regulators that impacted on the differentiation process. Other genes limited the proliferative capacity of activated B cells (Sumo2, Vcp, Selk). The largest number of genes identified in this screen (35) were required for antibody secretion. These included genes involved in endoplasmic reticulum-associated degradation and the unfolded protein response, as well as post-translational protein modifications. Discussion: The genes identified in this study represent weak links in the antibody-secretion pathway that are potential drug targets for antibody-mediated diseases, as well as candidates for genes whose mutation results in primary immune deficiency.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Secretory Pathway , Antibodies , B-Lymphocytes , Immunity, Humoral
18.
bioRxiv ; 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36909576

ABSTRACT

Following their proliferative expansion and differentiation into effector cells like Th1, Tfh, and T central memory precursors (Tcmp), most effector CD4+ T cells die, while some survive and become memory cells. Here, we explored how Bcl-2 family members controlled the survival of CD4+ T cells during distinct phases of mouse acute LCMV infection. During expansion, we found that Th1 cells dominated the response, downregulated expression of Bcl-2, and did not require Bcl-2 for survival. Instead, they relied on the anti-apoptotic protein, A1 for survival. Similarly, Th17 cells in an EAE model also depended on A1 for survival. However, after the peak of the response, CD4+ effector T cells required Bcl-2 to counteract Bim to aid their transition into memory. This Bcl-2 dependence persisted in established memory CD4+ T cells. Combined, these data show a temporal switch in Bcl-2 family-mediated survival of CD4+ T cells over the course of an immune response. This knowledge can help improve T cell survival to boost immunity and conversely, target pathogenic T cells.

19.
Cell Death Dis ; 14(3): 214, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36973252

ABSTRACT

The cytokine TNF has essential roles in immune defence against diverse pathogens and, when its expression is deregulated, it can drive severe inflammatory disease. The control of TNF levels is therefore critical for normal functioning of the immune system and health. We have identified GPATCH2 as a putative repressor of Tnf expression acting post-transcriptionally through the TNF 3' UTR in a CRISPR screen for novel regulators of TNF. GPATCH2 is a proposed cancer-testis antigen with roles reported in proliferation in cell lines. However, its role in vivo has not been established. We have generated Gpatch2-/- mice on a C57BL/6 background to assess the potential of GPATCH2 as a regulator of Tnf expression. Here we provide the first insights into Gpatch2-/- animals and show that loss of GPATCH2 affects neither basal Tnf expression in mice, nor Tnf expression in intraperitoneal LPS and subcutaneous SMAC-mimetic injection models of inflammation. We detected GPATCH2 protein in mouse testis and at lower levels in several other tissues, however, the morphology of the testis and these other tissues appears normal in Gpatch2-/- animals. Gpatch2-/- mice are viable, appear grossly normal, and we did not detect notable aberrations in lymphoid tissues or blood cell composition. Collectively, our results suggest no discernible role of GPATCH2 in Tnf expression, and the absence of an overt phenotype in Gpatch2-/- mice warrants further investigation of the role of GPATCH2.


Subject(s)
Carrier Proteins , Cytokines , Tumor Necrosis Factor-alpha , Animals , Male , Mice , Immune System/metabolism , Inflammation/metabolism , Lipopolysaccharides , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha/metabolism , Mice, Knockout , Carrier Proteins/genetics
20.
EMBO J ; 42(5): e110468, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36647737

ABSTRACT

Genetic lesions in X-linked inhibitor of apoptosis (XIAP) pre-dispose humans to cell death-associated inflammatory diseases, although the underlying mechanisms remain unclear. Here, we report that two patients with XIAP deficiency-associated inflammatory bowel disease display increased inflammatory IL-1ß maturation as well as cell death-associated caspase-8 and Gasdermin D (GSDMD) processing in diseased tissue, which is reduced upon patient treatment. Loss of XIAP leads to caspase-8-driven cell death and bioactive IL-1ß release that is only abrogated by combined deletion of the apoptotic and pyroptotic cell death machinery. Namely, extrinsic apoptotic caspase-8 promotes pyroptotic GSDMD processing that kills macrophages lacking both inflammasome and apoptosis signalling components (caspase-1, -3, -7, -11 and BID), while caspase-8 can still cause cell death in the absence of both GSDMD and GSDME when caspase-3 and caspase-7 are present. Neither caspase-3 and caspase-7-mediated activation of the pannexin-1 channel, or GSDMD loss, prevented NLRP3 inflammasome assembly and consequent caspase-1 and IL-1ß maturation downstream of XIAP inhibition and caspase-8 activation, even though the pannexin-1 channel was required for NLRP3 triggering upon mitochondrial apoptosis. These findings uncouple the mechanisms of cell death and NLRP3 activation resulting from extrinsic and intrinsic apoptosis signalling, reveal how XIAP loss can co-opt dual cell death programs, and uncover strategies for targeting the cell death and inflammatory pathways that result from XIAP deficiency.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Apoptosis , Caspase 1/genetics , Caspase 1/metabolism , Caspase 3/metabolism , Caspase 7/metabolism , Caspase 8/genetics , Caspase 8/metabolism , Cell Death , Inflammasomes/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/physiology , X-Linked Inhibitor of Apoptosis Protein/genetics , X-Linked Inhibitor of Apoptosis Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...